Internal
problem
ID
[24595]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
8.
Linear
Differential
Equations
with
constant
coefficients.
Exercises
at
page
127
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 10:46:23 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)+7*diff(diff(y(x),x),x)+19*diff(y(x),x)+13*y(x) = 0; ic:=[y(0) = 0, D(y)(0) = 2, (D@@2)(y)(0) = -12]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]+7*D[y[x],{x,2}]+19*D[y[x],{x,1}]+13*y[x] ==0; ic={y[0]==0,Derivative[1][y][0] ==2,Derivative[2][y][0] ==-12}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(13*y(x) + 19*Derivative(y(x), x) + 7*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 2, Subs(Derivative(y(x), (x, 2)), x, 0): -12} dsolve(ode,func=y(x),ics=ics)