89.12.13 problem 13

Internal problem ID [24567]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 121
Problem number : 13
Date solved : Thursday, October 02, 2025 at 10:46:09 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime \prime \prime }+4 y^{\prime \prime \prime }-3 y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 24
ode:=4*diff(diff(diff(diff(y(x),x),x),x),x)+4*diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-x} \left (\left (c_4 x +c_3 \right ) {\mathrm e}^{\frac {3 x}{2}}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 33
ode=4*D[y[x],{x,4}]+4*D[y[x],{x,3}]-3*D[y[x],{x,2}]-2*D[y[x],{x,1}]+ y[x] ==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (e^{3 x/2} (c_2 x+c_1)+c_4 x+c_3\right ) \end{align*}
Sympy. Time used: 0.115 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + 4*Derivative(y(x), (x, 3)) + 4*Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- x} + \left (C_{3} + C_{4} x\right ) e^{\frac {x}{2}} \]