89.12.7 problem 7

Internal problem ID [24561]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 121
Problem number : 7
Date solved : Thursday, October 02, 2025 at 10:46:07 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+3 y^{\prime \prime }-4 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 20
ode:=diff(diff(diff(y(x),x),x),x)+3*diff(diff(y(x),x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{3 x}+c_3 x +c_2 \right ) {\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.002 (sec). Leaf size: 26
ode=D[y[x],{x,3}]+3*D[y[x],{x,2}] -4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_2 x+c_3 e^{3 x}+c_1\right ) \end{align*}
Sympy. Time used: 0.037 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} + C_{2} x\right ) e^{- 2 x} \]