89.12.2 problem 2

Internal problem ID [24556]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 8. Linear Differential Equations with constant coefficients. Exercises at page 121
Problem number : 2
Date solved : Thursday, October 02, 2025 at 10:46:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+6 y^{\prime }+9 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=diff(diff(y(x),x),x)+6*diff(y(x),x)+9*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-3 x} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 18
ode=D[y[x],{x,2}]+6*D[y[x],x] +9*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-3 x} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.082 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) + 6*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- 3 x} \]