88.24.1 problem 1

Internal problem ID [24194]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 7. Series Methods. Exercises at page 202
Problem number : 1
Date solved : Thursday, October 02, 2025 at 10:00:43 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} 4 y^{\prime \prime }+x^{2} y^{\prime }-y x&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 23
Order:=6; 
ode:=4*diff(diff(y(x),x),x)+x^2*diff(y(x),x)-x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{3}}{24}\right ) y \left (0\right )+y^{\prime }\left (0\right ) x +O\left (x^{6}\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 20
ode=4*D[y[x],{x,2}]+x^2*D[y[x],{x,1}]-x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{24}+1\right )+c_2 x \]
Sympy. Time used: 0.203 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{3}}{24} + 1\right ) + C_{1} x + O\left (x^{6}\right ) \]