88.23.6 problem 7

Internal problem ID [24180]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 5. Special Techniques for Linear Equations. Miscellaneous Exercises at page 162
Problem number : 7
Date solved : Thursday, October 02, 2025 at 10:00:32 PM
CAS classification : [[_high_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\left (10\right )}+y&=x^{10} \end{align*}
Maple. Time used: 0.064 (sec). Leaf size: 165
ode:=diff(diff(diff(diff(diff(diff(diff(diff(diff(diff(y(x),x),x),x),x),x),x),x),x),x),x)+y(x) = x^10; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_3 \cos \left (\frac {\left (\sqrt {5}+1\right ) x}{4}\right )+c_4 \sin \left (\frac {\left (\sqrt {5}+1\right ) x}{4}\right )\right ) {\mathrm e}^{-\frac {\sqrt {10-2 \sqrt {5}}\, x}{4}}+\left (c_5 \cos \left (\frac {\left (\sqrt {5}+1\right ) x}{4}\right )+c_6 \sin \left (\frac {\left (\sqrt {5}+1\right ) x}{4}\right )\right ) {\mathrm e}^{\frac {\sqrt {10-2 \sqrt {5}}\, x}{4}}+\left (c_7 \cos \left (\frac {\left (\sqrt {5}-1\right ) x}{4}\right )+c_8 \sin \left (\frac {\left (\sqrt {5}-1\right ) x}{4}\right )\right ) {\mathrm e}^{-\frac {\sqrt {10+2 \sqrt {5}}\, x}{4}}+\left (c_9 \cos \left (\frac {\left (\sqrt {5}-1\right ) x}{4}\right )+\textit {\_C10} \sin \left (\frac {\left (\sqrt {5}-1\right ) x}{4}\right )\right ) {\mathrm e}^{\frac {\sqrt {10+2 \sqrt {5}}\, x}{4}}+x^{10}+c_1 \cos \left (x \right )+c_2 \sin \left (x \right )-3628800 \]
Mathematica. Time used: 0.007 (sec). Leaf size: 317
ode=D[y[x],{x,10}]+y[x]==x^10; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^{10}+c_3 \cos (x)+e^{-\frac {1}{2} \sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} x} \left (c_1 e^{\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} x}+c_5\right ) \cos \left (\frac {1}{4} \left (\sqrt {5}-1\right ) x\right )+c_2 e^{\frac {1}{2} \sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} x} \cos \left (\frac {1}{4} \left (1+\sqrt {5}\right ) x\right )+c_4 e^{-\frac {1}{2} \sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} x} \cos \left (\frac {1}{4} \left (1+\sqrt {5}\right ) x\right )+c_8 \sin (x)+c_6 e^{-\frac {1}{2} \sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} x} \sin \left (\frac {1}{4} \left (\sqrt {5}-1\right ) x\right )+c_{10} e^{\frac {1}{2} \sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} x} \sin \left (\frac {1}{4} \left (\sqrt {5}-1\right ) x\right )+c_7 e^{-\frac {1}{2} \sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} x} \sin \left (\frac {1}{4} \left (1+\sqrt {5}\right ) x\right )+c_9 e^{\frac {1}{2} \sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} x} \sin \left (\frac {1}{4} \left (1+\sqrt {5}\right ) x\right )-3628800 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**10 + y(x) + Derivative(y(x), (x, 10)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : Cannot find 10 solutions to the homogeneous equation necessary to apply undete