Internal
problem
ID
[24165]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Exercises
at
page
160
(Laplace
transform)
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 10:00:22 PM
CAS
classification
:
[[_high_order, _missing_y]]
Using Laplace method
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+4*diff(diff(y(x),x),x) = 16*exp(2*x); dsolve(ode,y(x),method='laplace');
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+4*D[y[x],{x,2}]==16*Exp[2*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-16*exp(2*x) + 4*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)