87.31.15 problem 15

Internal problem ID [23931]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 321
Problem number : 15
Date solved : Thursday, October 02, 2025 at 09:46:37 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-2 x \left (t \right )+y \left (t \right )-x \left (t \right )^{2}+2 y \left (t \right )^{2}\\ \frac {d}{d t}y \left (t \right )&=3 x \left (t \right )+2 y \left (t \right )+x \left (t \right )^{2} y \left (t \right )^{2} \end{align*}
Maple
ode:=[diff(x(t),t) = -2*x(t)+y(t)-x(t)^2+2*y(t)^2, diff(y(t),t) = 3*x(t)+2*y(t)+x(t)^2*y(t)^2]; 
dsolve(ode);
 
\[ \text {No solution found} \]
Mathematica
ode={D[x[t],t]==-2*x[t]+y[t]-x[t]^2+2*y[t]^2,D[y[t],t]==3*x[t]+2*y[t]+x[t]^2*y[t]^2}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t)**2 + 2*x(t) - 2*y(t)**2 - y(t) + Derivative(x(t), t),0),Eq(-x(t)**2*y(t)**2 - 3*x(t) - 2*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
NotImplementedError :