Internal
problem
ID
[23914]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
8.
Nonlinear
differential
equations
and
systems.
Exercise
at
page
310
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 09:46:30 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = y(t)+x(t)^2-x(t)*y(t), diff(y(t),t) = -2*x(t)+3*y(t)+y(t)^2]; dsolve(ode);
ode={D[x[t],t]==y[t]+x[t]^2-x[t]*y[t],D[y[t],t]==-2*x[t]+3*y[t]+y[t]^2}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-x(t)**2 + x(t)*y(t) - y(t) + Derivative(x(t), t),0),Eq(2*x(t) - y(t)**2 - 3*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)
Timed Out