87.30.5 problem 5

Internal problem ID [23904]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 310
Problem number : 5
Date solved : Thursday, October 02, 2025 at 09:46:25 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )-y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=x \left (t \right )+3 y \left (t \right ) \end{align*}
Maple. Time used: 0.040 (sec). Leaf size: 29
ode:=[diff(x(t),t) = x(t)-y(t), diff(y(t),t) = x(t)+3*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{2 t} \left (c_2 t +c_1 \right ) \\ y \left (t \right ) &= -{\mathrm e}^{2 t} \left (c_2 t +c_1 +c_2 \right ) \\ \end{align*}
Mathematica. Time used: 0.002 (sec). Leaf size: 42
ode={D[x[t],t]==x[t]-y[t],D[y[t],t]==x[t]+3*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to -e^{2 t} (c_1 (t-1)+c_2 t)\\ y(t)&\to e^{2 t} ((c_1+c_2) t+c_2) \end{align*}
Sympy. Time used: 0.059 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + y(t) + Derivative(x(t), t),0),Eq(-x(t) - 3*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - C_{2} t e^{2 t} - \left (C_{1} - C_{2}\right ) e^{2 t}, \ y{\left (t \right )} = C_{1} e^{2 t} + C_{2} t e^{2 t}\right ] \]