87.29.11 problem 11

Internal problem ID [23891]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 304
Problem number : 11
Date solved : Sunday, October 12, 2025 at 05:55:15 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=-x \left (t \right )^{2}+y \left (t \right )^{2}\\ \frac {d}{d t}y \left (t \right )&=2 x \left (t \right ) y \left (t \right ) \end{align*}
Maple. Time used: 0.087 (sec). Leaf size: 86
ode:=[diff(x(t),t) = -x(t)^2+y(t)^2, diff(y(t),t) = 2*x(t)*y(t)]; 
dsolve(ode);
 
\begin{align*} \left [\{y \left (t \right ) = 0\}, \left \{x \left (t \right ) &= \frac {1}{t +c_1}\right \}\right ] \\ \left [\left \{y \left (t \right ) &= \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}-\frac {3}{\sqrt {12 \textit {\_a}^{4}+3 c_1 \textit {\_a}}}d \textit {\_a} +t +c_2 \right ), y \left (t \right ) = \operatorname {RootOf}\left (-\int _{}^{\textit {\_Z}}\frac {3}{\sqrt {12 \textit {\_a}^{4}+3 c_1 \textit {\_a}}}d \textit {\_a} +t +c_2 \right )\right \}, \left \{x \left (t \right ) = \frac {\frac {d}{d t}y \left (t \right )}{2 y \left (t \right )}\right \}\right ] \\ \end{align*}
Mathematica. Time used: 29.021 (sec). Leaf size: 3659
ode={D[x[t],t]==-x[t]^2+y[t]^2,D[y[t],t]==2*x[t]*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Too large to display

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(x(t)**2 - y(t)**2 + Derivative(x(t), t),0),Eq(-2*x(t)*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out