87.29.6 problem 6

Internal problem ID [23886]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 8. Nonlinear differential equations and systems. Exercise at page 304
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:46:17 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-2 y \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right )&=1 \\ y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.042 (sec). Leaf size: 13
ode:=[diff(x(t),t) = x(t), diff(y(t),t) = -2*y(t)]; 
ic:=[x(0) = 1, y(0) = 1]; 
dsolve([ode,op(ic)]);
 
\begin{align*} x \left (t \right ) &= {\mathrm e}^{t} \\ y \left (t \right ) &= {\mathrm e}^{-2 t} \\ \end{align*}
Mathematica. Time used: 0.022 (sec). Leaf size: 16
ode={D[x[t],t]==x[t],D[y[t],t]==-2*y[t]}; 
ic={x[0]==1,y[0]==1}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to e^t\\ y(t)&\to e^{-2 t} \end{align*}
Sympy. Time used: 0.044 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) + Derivative(x(t), t),0),Eq(2*y(t) + Derivative(y(t), t),0)] 
ics = {x(0): 1, y(0): 1} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = e^{t}, \ y{\left (t \right )} = e^{- 2 t}\right ] \]