87.25.21 problem 21

Internal problem ID [23824]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 5. Series solutions of second order linear equations. Exercise at page 232
Problem number : 21
Date solved : Thursday, October 02, 2025 at 09:45:32 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} y^{\prime \prime }+\left (1+x \right ) y^{\prime }-y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 49
Order:=6; 
ode:=diff(diff(y(x),x),x)+(1+x)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}-\frac {1}{6} x^{3}+\frac {1}{60} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{2}+\frac {1}{6} x^{3}-\frac {1}{60} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 70
ode=D[y[x],{x,2}]-(x+1)*D[y[x],x]-y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^5}{15}+\frac {x^4}{6}+\frac {x^3}{6}+\frac {x^2}{2}+1\right )+c_2 \left (\frac {3 x^5}{20}+\frac {x^4}{4}+\frac {x^3}{2}+\frac {x^2}{2}+x\right ) \]
Sympy. Time used: 0.255 (sec). Leaf size: 42
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(x + 1)*Derivative(y(x), x) - y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{6} + \frac {x^{3}}{6} + \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{3}}{4} + \frac {x^{2}}{2} + \frac {x}{2} + 1\right ) + O\left (x^{6}\right ) \]