Internal
problem
ID
[23807]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
5.
Series
solutions
of
second
order
linear
equations.
Exercise
at
page
232
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 09:45:23 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(-x^2+4*x-3)*diff(diff(y(x),x),x)-2*(x-2)*diff(y(x),x)+6*y(x) = 0; ic:=[y(2) = 1, D(y)(2) = 0]; dsolve([ode,op(ic)],y(x),type='series',x=2);
ode=(-x^2+4*x-3)*D[y[x],{x,2}]-2*(x-2)*D[y[x],x]+6*y[x]==0; ic={y[2]==1,Derivative[1][y][2] ==0}; AsymptoticDSolveValue[{ode,ic},y[x],{x,2,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(2*x - 4)*Derivative(y(x), x) + (-x**2 + 4*x - 3)*Derivative(y(x), (x, 2)) + 6*y(x),0) ics = {y(2): 1, Subs(Derivative(y(x), x), x, 2): 1} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=2,n=6)