Internal
problem
ID
[23547]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
109
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 09:42:50 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
With initial conditions
ode:=x*diff(diff(y(x),x),x)+(1-2*x)*diff(y(x),x)+(x-1)*y(x) = 0; ic:=[y(1) = 2*exp(1), D(y)(1) = -3*exp(1)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],{x,2}]+(1-2*x)*D[y[x],x]+(x-1)*y[x]==0; ic={y[1]==2*Exp[1],Derivative[1][y][1] ==-3*Exp[1]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*Derivative(y(x), (x, 2)) + (1 - 2*x)*Derivative(y(x), x) + (x - 1)*y(x),0) ics = {y(1): 2*E, Subs(Derivative(y(x), x), x, 1): -3*E} dsolve(ode,func=y(x),ics=ics)
ValueError : Couldnt solve for initial conditions