Internal
problem
ID
[23530]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
109
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 09:42:44 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=diff(diff(y(x),x),x)+1/x^(1/3)*diff(y(x),x)+(1/4/x^(2/3)-1/6/x^(4/3)-6/x^2)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]+1/x^(1/3)*D[y[x],x]+(1/4*x^(-2/3)-1/6*x^(-4/3)-6*x^(-2))*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-6/x**2 + 1/(4*x**(2/3)) - 1/(6*x**(4/3)))*y(x) + Derivative(y(x), (x, 2)) + Derivative(y(x), x)/x**(1/3),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x**(1/3)*Derivative(y(x), (x, 2)) + Derivative(y(x), x) - y(x)/(