87.13.16 problem 17

Internal problem ID [23499]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 100
Problem number : 17
Date solved : Thursday, October 02, 2025 at 09:42:28 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (-1\right )&=1 \\ y^{\prime }\left (-1\right )&=0 \\ \end{align*}
Maple. Time used: 0.015 (sec). Leaf size: 14
ode:=x^2*diff(diff(y(x),x),x)-x*diff(y(x),x)+y(x) = 0; 
ic:=[y(-1) = 1, D(y)(-1) = 0]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = x \left (-i \pi +\ln \left (x \right )-1\right ) \]
Mathematica. Time used: 0.011 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0; 
ic={y[-1]==1,Derivative[1][y][-1] ==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (\log (x)-i \pi -1) \end{align*}
Sympy. Time used: 0.105 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - x*Derivative(y(x), x) + y(x),0) 
ics = {y(-1): 1, Subs(Derivative(y(x), x), x, -1): 0} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (\log {\left (x \right )} - 1 - i \pi \right ) \]