Internal
problem
ID
[23479]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
93
Problem
number
:
34
Date
solved
:
Thursday, October 02, 2025 at 09:42:15 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=4*diff(diff(y(t),t),t)+8*diff(y(t),t)+4*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=4*D[y[t],{t,2}]+8*D[y[t],t]+4*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) + 8*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)