Internal
problem
ID
[23469]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
93
Problem
number
:
22
Date
solved
:
Thursday, October 02, 2025 at 09:42:07 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(x),x),x)+3*diff(y(x),x)+2*y(x) = 0; ic:=[y(0) = 0, D(y)(-1) = exp(1)]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+3*D[y[x],x]+2*y[x]==0; ic={y[0]==0,Derivative[1][y][-1] ==Exp[1]}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*y(x) + 3*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, -1): E} dsolve(ode,func=y(x),ics=ics)