Internal
problem
ID
[23465]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
93
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 09:42:04 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-4*diff(diff(y(x),x),x)+4*diff(y(x),x) = 0; ic:=[y(0) = 2, D(y)(0) = -1, (D@@2)(y)(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,3}]-4*D[y[x],{x,2}]+4*D[y[x],x]==0; ic={y[0]==2,Derivative[1][y][0] ==-1,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*Derivative(y(x), x) - 4*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 2, Subs(Derivative(y(x), x), x, 0): -1, Subs(Derivative(y(x), (x, 2)), x, 0): 0} dsolve(ode,func=y(x),ics=ics)