87.11.18 problem 18

Internal problem ID [23436]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 84
Problem number : 18
Date solved : Thursday, October 02, 2025 at 09:41:43 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 4 y^{\prime \prime }-3 y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 28
ode:=4*diff(diff(y(x),x),x)-3*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{\frac {3 x}{8}} \left (c_1 \sin \left (\frac {\sqrt {7}\, x}{8}\right )+c_2 \cos \left (\frac {\sqrt {7}\, x}{8}\right )\right ) \]
Mathematica. Time used: 0.013 (sec). Leaf size: 42
ode=4*D[y[x],{x,2}]-3*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{3 x/8} \left (c_2 \cos \left (\frac {\sqrt {7} x}{8}\right )+c_1 \sin \left (\frac {\sqrt {7} x}{8}\right )\right ) \end{align*}
Sympy. Time used: 0.133 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 3*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\frac {\sqrt {7} x}{8} \right )} + C_{2} \cos {\left (\frac {\sqrt {7} x}{8} \right )}\right ) e^{\frac {3 x}{8}} \]