87.11.13 problem 13

Internal problem ID [23431]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 84
Problem number : 13
Date solved : Thursday, October 02, 2025 at 09:41:40 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 2 y^{\prime \prime }+3 y^{\prime }-2 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=2*diff(diff(y(x),x),x)+3*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{-2 x}+c_2 \,{\mathrm e}^{\frac {x}{2}} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 24
ode=2*D[y[x],{x,2}]+3*D[y[x],{x,1}]-2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (c_1 e^{5 x/2}+c_2\right ) \end{align*}
Sympy. Time used: 0.131 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) + 3*Derivative(y(x), x) + 2*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + C_{2} e^{\frac {x}{2}} \]