Internal
problem
ID
[23416]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
79
Problem
number
:
16
Date
solved
:
Thursday, October 02, 2025 at 09:41:32 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=(x^2-4)*diff(diff(y(x),x),x)+3*x^3*diff(y(x),x)+4/(x-1)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x^2-4)*D[y[x],{x,2}]+3*x^3*D[y[x],x]+4/(x-1)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**3*Derivative(y(x), x) + (x**2 - 4)*Derivative(y(x), (x, 2)) + 4*y(x)/(x - 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False