Internal
problem
ID
[23408]
Book
:
Ordinary
differential
equations
with
modern
applications.
Ladas,
G.
E.
and
Finizio,
N.
Wadsworth
Publishing.
California.
1978.
ISBN
0-534-00552-7.
QA372.F56
Section
:
Chapter
2.
Linear
differential
equations.
Exercise
at
page
79
Problem
number
:
8
Date
solved
:
Thursday, October 02, 2025 at 09:41:11 PM
CAS
classification
:
[[_2nd_order, _missing_x], [_2nd_order, _exact, _nonlinear], [_2nd_order, _reducible, _mu_x_y1], [_2nd_order, _reducible, _mu_xy]]
With initial conditions
ode:=diff(diff(y(x),x),x)+y(x)*diff(y(x),x) = 2; ic:=[y(0) = 0, D(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,2}]+y[x]*D[y[x],x]==2; ic={y[0]==0,Derivative[1][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(y(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 2,0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): -1} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(2 - Derivative(y(x), (x, 2)))/y(x) + Derivative(y(x), x) canno