87.10.3 problem 3

Internal problem ID [23404]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 79
Problem number : 3
Date solved : Thursday, October 02, 2025 at 09:41:08 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=1 \\ y^{\prime }\left (1\right )&=1 \\ \end{align*}
Maple. Time used: 0.053 (sec). Leaf size: 45
ode:=x*diff(diff(y(x),x),x)+y(x) = 0; 
ic:=[y(1) = 1, D(y)(1) = 1]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = -\left (\left (\operatorname {BesselY}\left (1, 2\right )-\operatorname {BesselY}\left (0, 2\right )\right ) \operatorname {BesselJ}\left (1, 2 \sqrt {x}\right )+\operatorname {BesselY}\left (1, 2 \sqrt {x}\right ) \left (\operatorname {BesselJ}\left (0, 2\right )-\operatorname {BesselJ}\left (1, 2\right )\right )\right ) \sqrt {x}\, \pi \]
Mathematica. Time used: 0.026 (sec). Leaf size: 87
ode=x*D[y[x],{x,2}]+y[x]==0; 
ic={y[1]==1,Derivative[1][y][1] ==1}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {\sqrt {x} \left ((\operatorname {BesselY}(0,2)-\operatorname {BesselY}(1,2)-\operatorname {BesselY}(2,2)) \operatorname {BesselJ}\left (1,2 \sqrt {x}\right )+(-\operatorname {BesselJ}(0,2)+\operatorname {BesselJ}(1,2)+\operatorname {BesselJ}(2,2)) \operatorname {BesselY}\left (1,2 \sqrt {x}\right )\right )}{(\operatorname {BesselJ}(2,2)-\operatorname {BesselJ}(0,2)) \operatorname {BesselY}(1,2)+\operatorname {BesselJ}(1,2) (\operatorname {BesselY}(0,2)-\operatorname {BesselY}(2,2))} \end{align*}
Sympy. Time used: 0.099 (sec). Leaf size: 99
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) + y(x),0) 
ics = {y(1): 1, Subs(Derivative(y(x), x), x, 1): 1} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (\frac {\left (Y_{2}\left (2\right ) - Y_{0}\left (2\right ) + Y_{1}\left (2\right )\right ) J_{1}\left (2 \sqrt {x}\right )}{J_{1}\left (2\right ) Y_{2}\left (2\right ) - J_{1}\left (2\right ) Y_{0}\left (2\right ) + J_{0}\left (2\right ) Y_{1}\left (2\right ) - J_{2}\left (2\right ) Y_{1}\left (2\right )} + \frac {\left (- J_{1}\left (2\right ) - J_{2}\left (2\right ) + J_{0}\left (2\right )\right ) Y_{1}\left (2 \sqrt {x}\right )}{J_{1}\left (2\right ) Y_{2}\left (2\right ) - J_{1}\left (2\right ) Y_{0}\left (2\right ) + J_{0}\left (2\right ) Y_{1}\left (2\right ) - J_{2}\left (2\right ) Y_{1}\left (2\right )}\right ) \]