87.9.26 problem 41

Internal problem ID [23399]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 2. Linear differential equations. Exercise at page 74
Problem number : 41
Date solved : Thursday, October 02, 2025 at 09:41:04 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 3 y^{\prime \prime }+48 y^{\prime }+192 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=3*diff(diff(y(x),x),x)+48*diff(y(x),x)+192*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{-8 x} \left (c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 18
ode=3*D[y[x],{x,2}]+48*D[y[x],x]+192*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-8 x} (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(192*y(x) + 48*Derivative(y(x), x) + 3*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} x\right ) e^{- 8 x} \]