87.7.1 problem 1

Internal problem ID [23342]
Book : Ordinary differential equations with modern applications. Ladas, G. E. and Finizio, N. Wadsworth Publishing. California. 1978. ISBN 0-534-00552-7. QA372.F56
Section : Chapter 1. Elementary methods. First order differential equations. Exercise at page 57
Problem number : 1
Date solved : Thursday, October 02, 2025 at 09:39:20 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y^{\prime }&=3 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(diff(y(x),x),x)+diff(y(x),x) = 3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = -{\mathrm e}^{-x} c_1 +3 x +c_2 \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=D[y[x],{x,2}]+D[y[x],{x,1}]==3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to 3 x-c_1 e^{-x}+c_2 \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- x} + 3 x \]