85.35.4 problem 5

Internal problem ID [22724]
Book : Applied Differential Equations. By Murray R. Spiegel. 3rd edition. 1980. Pearson. ISBN 978-0130400970
Section : Chapter two. First order and simple higher order ordinary differential equations. C Exercises at page 68
Problem number : 5
Date solved : Thursday, October 02, 2025 at 09:13:57 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {y}{x} \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 7
ode:=diff(y(x),x) = y(x)/x; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 x \]
Mathematica. Time used: 0.015 (sec). Leaf size: 14
ode=D[y[x],x]==(y[x]*(y[x]^2-x^2+1))/(x*(y[x]^2-x^2+1)); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 x\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.053 (sec). Leaf size: 5
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} x \]