Internal
problem
ID
[22395]
Book
:
Schaums
outline
series.
Differential
Equations
By
Richard
Bronson.
1973.
McGraw-Hill
Inc.
ISBN
0-07-008009-7
Section
:
Chapter
31.
Solutions
of
linear
systems
with
constant
coefficients.
Supplementary
problems
Problem
number
:
31.16
Date
solved
:
Thursday, October 02, 2025 at 08:38:14 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = x__2(t), diff(x__2(t),t) = x__3(t), diff(x__3(t),t) = 6*t]; ic:=[x__1(0) = 0, x__2(0) = 0, x__3(0) = 12]; dsolve([ode,op(ic)]);
ode={D[x1[t],t]==x2[t],D[x2[t],t]==x3[t],D[x3[t],t]==6*t}; ic={x1[0]==0,x2[0]==0,x3[0]==12}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x1 = Function("x1") x2 = Function("x2") x3 = Function("x3") ode=[Eq(-x2(t) + Derivative(x1(t), t),0),Eq(-x3(t) + Derivative(x2(t), t),0),Eq(-6*t + Derivative(x3(t), t),0)] ics = {x1(0): 0, x2(0): 0, x3(0): 12} dsolve(ode,func=[x1(t),x2(t),x3(t)],ics=ics)