Internal
problem
ID
[1039]
Book
:
Differential
equations
and
linear
algebra,
4th
ed.,
Edwards
and
Penney
Section
:
Section
7.6,
Multiple
Eigenvalue
Solutions.
Page
451
Problem
number
:
problem
32
Date
solved
:
Tuesday, September 30, 2025 at 04:21:04 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 11*x__1(t)-x__2(t)+26*x__3(t)+6*x__4(t)-3*x__5(t), diff(x__2(t),t) = 3*x__2(t), diff(x__3(t),t) = -9*x__1(t)-24*x__3(t)-6*x__4(t)+3*x__5(t), diff(x__4(t),t) = 3*x__1(t)+9*x__3(t)+5*x__4(t)-x__5(t), diff(x__5(t),t) = -48*x__1(t)-3*x__2(t)-138*x__3(t)-30*x__4(t)+18*x__5(t)]; dsolve(ode);
ode={D[ x1[t],t]==11*x1[t]-1*x2[t]+26*x3[t]+6*x4[t]-3*x5[t],D[ x2[t],t]==0*x1[t]+3*x2[t],D[ x3[t],t]==-9*x1[t]+0*x2[t]-24*x3[t]-6*x4[t]+3*x5[t],D[ x4[t],t]==3*x1[t]+0*x2[t]+9*x3[t]+5*x4[t]-1*x5[t],D[ x5[t],t]==-48*x1[t]-3*x2[t]-138*x3[t]-30*x4[t]+18*x5[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") x__5 = Function("x__5") ode=[Eq(-11*x__1(t) + x__2(t) - 26*x__3(t) - 6*x__4(t) + 3*x__5(t) + Derivative(x__1(t), t),0),Eq(-3*x__2(t) + Derivative(x__2(t), t),0),Eq(9*x__1(t) + 24*x__3(t) + 6*x__4(t) - 3*x__5(t) + Derivative(x__3(t), t),0),Eq(-3*x__1(t) - 9*x__3(t) - 5*x__4(t) + x__5(t) + Derivative(x__4(t), t),0),Eq(48*x__1(t) + 3*x__2(t) + 138*x__3(t) + 30*x__4(t) - 18*x__5(t) + Derivative(x__5(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t),x__5(t)],ics=ics)