Internal
problem
ID
[21837]
Book
:
The
Differential
Equations
Problem
Solver.
VOL.
II.
M.
Fogiel
director.
REA,
NY.
1978.
ISBN
78-63609
Section
:
Chapter
28.
Laplace
transforms.
Page
850
Problem
number
:
28-19
Date
solved
:
Thursday, October 02, 2025 at 08:02:43 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
Using Laplace method With initial conditions
ode:=diff(diff(diff(y(t),t),t),t)+diff(y(t),t) = exp(t); ic:=[y(0) = 0, D(y)(0) = 0, (D@@2)(y)(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,3}]+D[y[t],t]==Exp[t]; ic={y[0]==0,Derivative[1][y][0] ==0,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-exp(t) + Derivative(y(t), t) + Derivative(y(t), (t, 3)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 0, Subs(Derivative(y(t), (t, 2)), t, 0): 0} dsolve(ode,func=y(t),ics=ics)