80.7.34 problem D 3

Internal problem ID [21353]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 7. System of first order equations. Excercise 7.6 at page 162
Problem number : D 3
Date solved : Sunday, October 12, 2025 at 05:51:27 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )-t y \left (t \right )&=1\\ \frac {d}{d t}y \left (t \right )-t \left (\frac {d}{d t}x \left (t \right )\right )&=3 \end{align*}
Maple. Time used: 0.106 (sec). Leaf size: 274
ode:=[diff(x(t),t)-t*y(t) = 1, diff(y(t),t)-t*diff(x(t),t) = 3]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= \int \frac {5 \,{\mathrm e}^{\frac {t^{3}}{6}} \operatorname {WhittakerM}\left (\frac {1}{6}, \frac {2}{3}, \frac {t^{3}}{3}\right ) \left (t^{3}\right )^{{1}/{3}} 243^{{5}/{6}} t^{3}+18 \operatorname {WhittakerM}\left (\frac {1}{3}, \frac {5}{6}, \frac {t^{3}}{3}\right ) \left (t^{3}\right )^{{1}/{6}} {\mathrm e}^{\frac {t^{3}}{6}} 9^{{2}/{3}} t^{4}+20 \operatorname {WhittakerM}\left (\frac {7}{6}, \frac {2}{3}, \frac {t^{3}}{3}\right ) {\mathrm e}^{\frac {t^{3}}{6}} \left (t^{3}\right )^{{1}/{3}} 243^{{5}/{6}}+90 \left (t^{3}\right )^{{1}/{6}} \operatorname {WhittakerM}\left (\frac {4}{3}, \frac {5}{6}, \frac {t^{3}}{3}\right ) {\mathrm e}^{\frac {t^{3}}{6}} 9^{{2}/{3}} t +180 \,{\mathrm e}^{\frac {t^{3}}{3}} c_2 \sqrt {t^{3}}\, t^{2}}{180 t \sqrt {t^{3}}}d t +t +c_1 \\ y \left (t \right ) &= \frac {5 \,{\mathrm e}^{\frac {t^{3}}{6}} \operatorname {WhittakerM}\left (\frac {1}{6}, \frac {2}{3}, \frac {t^{3}}{3}\right ) \left (t^{3}\right )^{{1}/{3}} 243^{{5}/{6}} t^{3}+18 \operatorname {WhittakerM}\left (\frac {1}{3}, \frac {5}{6}, \frac {t^{3}}{3}\right ) \left (t^{3}\right )^{{1}/{6}} {\mathrm e}^{\frac {t^{3}}{6}} 9^{{2}/{3}} t^{4}+20 \operatorname {WhittakerM}\left (\frac {7}{6}, \frac {2}{3}, \frac {t^{3}}{3}\right ) {\mathrm e}^{\frac {t^{3}}{6}} \left (t^{3}\right )^{{1}/{3}} 243^{{5}/{6}}+90 \left (t^{3}\right )^{{1}/{6}} \operatorname {WhittakerM}\left (\frac {4}{3}, \frac {5}{6}, \frac {t^{3}}{3}\right ) {\mathrm e}^{\frac {t^{3}}{6}} 9^{{2}/{3}} t +180 \,{\mathrm e}^{\frac {t^{3}}{3}} c_2 \sqrt {t^{3}}\, t^{2}}{180 \sqrt {t^{3}}\, t^{2}} \\ \end{align*}
Mathematica. Time used: 0.902 (sec). Leaf size: 242
ode={D[x[t],t]-t*y[t]==1,D[y[t],t]-t*D[x[t],t]==3}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to \int _1^t\left (\frac {e^{-\frac {1}{3} K[1]^3} \Gamma \left (\frac {2}{3},-\frac {1}{3} K[1]^3\right ) (K[1]+3) K[1]^2}{\sqrt [3]{3} \left (-K[1]^3\right )^{2/3}}+1\right )dK[1]+\frac {\Gamma \left (\frac {2}{3},-\frac {t^3}{3}\right ) \left (-3 \sqrt [3]{-t^6} t \Gamma \left (\frac {1}{3},\frac {t^3}{3}\right )+3^{2/3} c_1 \sqrt [3]{t^3} \sqrt [3]{-t^6}+\frac {\sqrt [3]{3} t^5 \Gamma \left (\frac {2}{3},\frac {t^3}{3}\right )}{\left (-t^3\right )^{2/3}}\right )}{3 t \left (t^3\right )^{2/3}}+c_2\\ y(t)&\to -\frac {e^{\frac {t^3}{3}} \left (3 \sqrt [3]{3} \left (t^3\right )^{2/3} \Gamma \left (\frac {1}{3},\frac {t^3}{3}\right )+t \left (3^{2/3} \sqrt [3]{t^3} \Gamma \left (\frac {2}{3},\frac {t^3}{3}\right )-3 c_1 t\right )\right )}{3 t^2} \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-t*y(t) + Derivative(x(t), t) - 1,0),Eq(-t*Derivative(x(t), t) + Derivative(y(t), t) - 3,0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
Timed Out