Internal
problem
ID
[21348]
Book
:
A
Textbook
on
Ordinary
Differential
Equations
by
Shair
Ahmad
and
Antonio
Ambrosetti.
Second
edition.
ISBN
978-3-319-16407-6.
Springer
2015
Section
:
Chapter
7.
System
of
first
order
equations.
Excercise
7.6
at
page
162
Problem
number
:
C
7
Date
solved
:
Thursday, October 02, 2025 at 07:28:40 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = x(t)+z(t), diff(y(t),t) = -y(t)+z(t), diff(z(t),t) = y(t)-z(t)]; ic:=[x(0) = 0, y(0) = 1, z(0) = 0]; dsolve([ode,op(ic)]);
ode={D[x[t],t]==x[t]+z[t],D[y[t],t]==-y[t]+z[t],D[z[t],t]==y[t]-z[t]}; ic={x[0]==0,y[0]==1,z[0]==0}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-x(t) - z(t) + Derivative(x(t), t),0),Eq(y(t) - z(t) + Derivative(y(t), t),0),Eq(-y(t) + z(t) + Derivative(z(t), t),0)] ics = {x(0): 0, y(0): 1, z(0): 0} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)