80.7.2 problem A 2

Internal problem ID [21321]
Book : A Textbook on Ordinary Differential Equations by Shair Ahmad and Antonio Ambrosetti. Second edition. ISBN 978-3-319-16407-6. Springer 2015
Section : Chapter 7. System of first order equations. Excercise 7.6 at page 162
Problem number : A 2
Date solved : Thursday, October 02, 2025 at 07:28:25 PM
CAS classification : system_of_ODEs

\begin{align*} x^{\prime }&=a x\\ y^{\prime }\left (t \right )&=a y \left (t \right ) \end{align*}
Maple. Time used: 0.044 (sec). Leaf size: 19
ode:=[diff(x(t),t) = a*x(t), diff(y(t),t) = a*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_2 \,{\mathrm e}^{a t} \\ y \left (t \right ) &= c_1 \,{\mathrm e}^{a t} \\ \end{align*}
Mathematica. Time used: 0.035 (sec). Leaf size: 65
ode={D[x[t],t]==a*x[t],D[y[t],t]==a*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)&\to c_1 e^{a t}\\ y(t)&\to c_2 e^{a t}\\ x(t)&\to c_1 e^{a t}\\ y(t)&\to 0\\ x(t)&\to 0\\ y(t)&\to c_2 e^{a t}\\ x(t)&\to 0\\ y(t)&\to 0 \end{align*}
Sympy. Time used: 0.032 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
a = symbols("a") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-a*x(t) + Derivative(x(t), t),0),Eq(-a*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = C_{1} e^{a t}, \ y{\left (t \right )} = C_{2} e^{a t}\right ] \]