Internal
problem
ID
[20876]
Book
:
A
Text
book
for
differentional
equations
for
postgraduate
students
by
Ray
and
Chaturvedi.
First
edition,
1958.
BHASKAR
press.
INDIA
Section
:
Book
Solved
Excercises.
Chapter
VI.
Homogeneous
linear
equations
with
variable
coefficients
Problem
number
:
Ex
15
page
92
Date
solved
:
Thursday, October 02, 2025 at 06:43:28 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+y(x) = 1/x*(ln(x)*sin(ln(x))+1); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+y[x]==1/x*(Log[x]*Sin[Log[x]]+1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + y(x) - (log(x)*sin(log(x)) + 1)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)