Internal
problem
ID
[19116]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.3
(Homogeneous
Linear
Systems
with
Constant
Coefficients).
Problems
at
page
408
Problem
number
:
21
Date
solved
:
Thursday, October 02, 2025 at 03:38:08 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -2*x__1(t)+2*x__2(t)-2*x__4(t), diff(x__2(t),t) = -x__1(t)+3*x__2(t)-x__3(t)+x__4(t), diff(x__3(t),t) = -2*x__1(t)-2*x__2(t)-4*x__3(t)+2*x__4(t), diff(x__4(t),t) = -7*x__1(t)+x__2(t)-7*x__3(t)+3*x__4(t)]; dsolve(ode);
ode={D[x1[t],t]==-2*x1[t]+2*x2[t]+0*x3[t]-2*x4[t],D[x2[t],t]==-1*x1[t]+3*x2[t]-1*x3[t]+1*x4[t],D[x3[t],t]==-2*x1[t]-2*x2[t]-4*x3[t]+2*x4[t],D[x4[t],t]==-7*x1[t]+1*x2[t]-7*x3[t]+3*x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(2*x__1(t) - 2*x__2(t) + 2*x__4(t) + Derivative(x__1(t), t),0),Eq(x__1(t) - 3*x__2(t) + x__3(t) - x__4(t) + Derivative(x__2(t), t),0),Eq(2*x__1(t) + 2*x__2(t) + 4*x__3(t) - 2*x__4(t) + Derivative(x__3(t), t),0),Eq(7*x__1(t) - x__2(t) + 7*x__3(t) - 3*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)