Internal
problem
ID
[18716]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.7
(Substitution
Methods).
Problems
at
page
108
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 03:23:08 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=diff(y(x),x) = (y(x)^4+2*x*y(x)^3-3*x^2*y(x)^2-2*x^3*y(x))/(2*x^2*y(x)^2-2*x^3*y(x)-2*x^4); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(y[x]^4+2*x*y[x]^3 -3*x^2*y[x]^2-2*x^3*y[x] )/( 2*x^2*y[x]^2 -2*x^3*y[x] -2*x^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (-2*x**3*y(x) - 3*x**2*y(x)**2 + 2*x*y(x)**3 + y(x)**4)/(-2*x**4 - 2*x**3*y(x) + 2*x**2*y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)