70.5.2 problem 2

Internal problem ID [18709]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 2. First order differential equations. Section 2.7 (Substitution Methods). Problems at page 108
Problem number : 2
Date solved : Thursday, October 02, 2025 at 03:22:15 PM
CAS classification : [_separable]

\begin{align*} \left (1+y^{4}\right ) y^{\prime }&=x^{4}+1 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 21
ode:=(y(x)^4+1)*diff(y(x),x) = x^4+1; 
dsolve(ode,y(x), singsol=all);
 
\[ \frac {x^{5}}{5}+x -\frac {y^{5}}{5}-y+c_1 = 0 \]
Mathematica. Time used: 4.64 (sec). Leaf size: 141
ode=(y[x]^4+1)*D[y[x],x]==x^4+1; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}-x^5-5 x-5 c_1\&,1\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}-x^5-5 x-5 c_1\&,2\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}-x^5-5 x-5 c_1\&,3\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}-x^5-5 x-5 c_1\&,4\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^5+5 \text {$\#$1}-x^5-5 x-5 c_1\&,5\right ] \end{align*}
Sympy. Time used: 0.109 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**4 + (y(x)**4 + 1)*Derivative(y(x), x) - 1,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ - \frac {x^{5}}{5} - x + \frac {y^{5}{\left (x \right )}}{5} + y{\left (x \right )} = C_{1} \]