Internal
problem
ID
[18317]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
2
(Higher
order
ODEs).
Section
15.3
Nonhomogeneous
linear
equations
with
constant
coefficients.
Trial
and
error
method.
Exercises
page
132
Problem
number
:
530
Date
solved
:
Thursday, October 02, 2025 at 03:10:23 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*m*diff(y(x),x)+m^2*y(x) = sin(n*x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*m*D[y[x],x]+m^2*y[x]==Sin[n*x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") m = symbols("m") n = symbols("n") y = Function("y") ode = Eq(m**2*y(x) - 2*m*Derivative(y(x), x) - sin(n*x) + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)