2.2.1 problem 1

Internal problem ID [661]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 1.3. Slope fields and solution curves. Page 26
Problem number : 1
Date solved : Tuesday, September 30, 2025 at 04:05:06 AM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&=-\sin \left (x \right )-y \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(y(x),x) = -sin(x)-y(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\cos \left (x \right )}{2}-\frac {\sin \left (x \right )}{2}+{\mathrm e}^{-x} c_1 \]
Mathematica. Time used: 0.023 (sec). Leaf size: 25
ode=D[y[x],x]== -Sin[x]-y[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (-\sin (x)+\cos (x)+2 c_1 e^{-x}\right ) \end{align*}
Sympy. Time used: 0.074 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) + sin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- x} - \frac {\sin {\left (x \right )}}{2} + \frac {\cos {\left (x \right )}}{2} \]