68.10.10 problem 10

Internal problem ID [17502]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.2, page 147
Problem number : 10
Date solved : Thursday, October 02, 2025 at 02:24:49 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+8 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 23
ode:=diff(diff(y(t),t),t)+8*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \sin \left (2 \sqrt {2}\, t \right )+c_2 \cos \left (2 \sqrt {2}\, t \right ) \]
Mathematica. Time used: 0.01 (sec). Leaf size: 30
ode=D[y[t],{t,2}]+8*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to c_1 \cos \left (2 \sqrt {2} t\right )+c_2 \sin \left (2 \sqrt {2} t\right ) \end{align*}
Sympy. Time used: 0.027 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(8*y(t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} \sin {\left (2 \sqrt {2} t \right )} + C_{2} \cos {\left (2 \sqrt {2} t \right )} \]