1.15.28 problem 28

Internal problem ID [484]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.3 (Regular singular points). Problems at page 231
Problem number : 28
Date solved : Tuesday, September 30, 2025 at 03:59:19 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }+2 y^{\prime }-4 x y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.028 (sec). Leaf size: 32
Order:=6; 
ode:=x*diff(diff(y(x),x),x)+2*diff(y(x),x)-4*x*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \left (1+\frac {2}{3} x^{2}+\frac {2}{15} x^{4}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (1+2 x^{2}+\frac {2}{3} x^{4}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]
Mathematica. Time used: 0.005 (sec). Leaf size: 40
ode=x*D[y[x],{x,2}]+2*D[y[x],x]-4*x*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {2 x^3}{3}+2 x+\frac {1}{x}\right )+c_2 \left (\frac {2 x^4}{15}+\frac {2 x^2}{3}+1\right ) \]
Sympy. Time used: 0.281 (sec). Leaf size: 46
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*x*y(x) + x*Derivative(y(x), (x, 2)) + 2*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {2 x^{4}}{15} + \frac {2 x^{2}}{3} + 1\right ) + \frac {C_{1} \left (\frac {4 x^{6}}{45} + \frac {2 x^{4}}{3} + 2 x^{2} + 1\right )}{x} + O\left (x^{6}\right ) \]