1.14.22 problem 22

Internal problem ID [447]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 3. Power series methods. Section 3.2 (Series solution near ordinary points). Problems at page 216
Problem number : 22
Date solved : Tuesday, September 30, 2025 at 03:58:50 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+6 x \right ) y^{\prime \prime }+\left (3 x +9\right ) y^{\prime }-3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} -3 \end{align*}

With initial conditions

\begin{align*} y \left (-3\right )&=0 \\ y^{\prime }\left (-3\right )&=2 \\ \end{align*}
Maple. Time used: 0.005 (sec). Leaf size: 9
Order:=6; 
ode:=(x^2+6*x)*diff(diff(y(x),x),x)+(3*x+9)*diff(y(x),x)-3*y(x) = 0; 
ic:=[y(-3) = 0, D(y)(-3) = 2]; 
dsolve([ode,op(ic)],y(x),type='series',x=-3);
 
\[ y = 2 x +6 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 8
ode=(x^2+6*x)*D[y[x],{x,2}]+(3*x+9)*D[y[x],x]-3*y[x]==0; 
ic={y[-3]==0,Derivative[1][y][-3] ==2}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,-3,5}]
 
\[ y(x)\to 2 (x+3) \]
Sympy. Time used: 0.287 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*x + 9)*Derivative(y(x), x) + (x**2 + 6*x)*Derivative(y(x), (x, 2)) - 3*y(x),0) 
ics = {y(-3): 0, Subs(Derivative(y(x), x), x, -3): 2} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=-3,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {5 \left (x + 3\right )^{4}}{648} - \frac {\left (x + 3\right )^{2}}{6} + 1\right ) + C_{1} \left (x + 3\right ) + O\left (x^{6}\right ) \]