66.1.21 problem 24

Internal problem ID [15908]
Book : DIFFERENTIAL EQUATIONS by Paul Blanchard, Robert L. Devaney, Glen R. Hall. 4th edition. Brooks/Cole. Boston, USA. 2012
Section : Chapter 1. First-Order Differential Equations. Exercises section 1.2. page 33
Problem number : 24
Date solved : Thursday, October 02, 2025 at 10:29:45 AM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=\sec \left (y\right ) \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 8
ode:=diff(y(x),x) = sec(y(x)); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \arcsin \left (x +c_1 \right ) \]
Mathematica. Time used: 0.103 (sec). Leaf size: 22
ode=D[y[x],x]==Sec[y[x]]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\cos (K[1])dK[1]\&\right ][x+c_1] \end{align*}
Sympy. Time used: 0.133 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) - 1/cos(y(x)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \pi - \operatorname {asin}{\left (C_{1} + x \right )}, \ y{\left (x \right )} = \operatorname {asin}{\left (C_{1} + x \right )}\right ] \]