61.2.4 problem Problem 1(d)

Internal problem ID [15242]
Book : APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section : Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number : Problem 1(d)
Date solved : Thursday, October 02, 2025 at 10:08:08 AM
CAS classification : [[_high_order, _missing_y]]

\begin{align*} y^{\left (5\right )}-y^{\prime \prime \prime \prime }+y^{\prime }&=2 x^{2}+3 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 372
ode:=diff(diff(diff(diff(diff(y(x),x),x),x),x),x)-diff(diff(diff(diff(y(x),x),x),x),x)+diff(y(x),x) = 2*x^2+3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}
Mathematica. Time used: 0.014 (sec). Leaf size: 119
ode=D[y[x],{x,5}]-D[y[x],{x,4}] +D[y[x],x]==2*x^2+3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^x\left (2 K[1]^2+\exp \left (K[1] \text {Root}\left [\text {$\#$1}^4-\text {$\#$1}^3+1\&,1\right ]\right ) c_1+\exp \left (K[1] \text {Root}\left [\text {$\#$1}^4-\text {$\#$1}^3+1\&,2\right ]\right ) c_2+\exp \left (K[1] \text {Root}\left [\text {$\#$1}^4-\text {$\#$1}^3+1\&,3\right ]\right ) c_3+\exp \left (K[1] \text {Root}\left [\text {$\#$1}^4-\text {$\#$1}^3+1\&,4\right ]\right ) c_4+3\right )dK[1]+c_5 \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x**2 + Derivative(y(x), x) - Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : Cannot find 5 solutions to the homogeneous equation necessary to apply undetermined coefficients to -2*x**2 + Derivative(y(x), x) - Derivative(y(x), (x, 4)) + Derivative(y(x), (x, 5)) - 3 (number of terms != order)