Internal
problem
ID
[15123]
Book
:
AN
INTRODUCTION
TO
ORDINARY
DIFFERENTIAL
EQUATIONS
by
JAMES
C.
ROBINSON.
Cambridge
University
Press
2004
Section
:
Chapter
30,
A
repeated
real
eigenvalue.
Exercises
page
299
Problem
number
:
30.1
(i)
Date
solved
:
Thursday, October 02, 2025 at 10:03:16 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 5*x(t)-4*y(t), diff(y(t),t) = x(t)+y(t)]; dsolve(ode);
ode={D[x[t],t]==5*x[t]-4*y[t],D[y[t],t]==x[t]+y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-5*x(t) + 4*y(t) + Derivative(x(t), t),0),Eq(-x(t) - y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)