58.4.22 problem 22(b)

Internal problem ID [14592]
Book : Differential Equations by Shepley L. Ross. Third edition. John Willey. New Delhi. 2004.
Section : Chapter 2, section 2.2 (Separable equations). Exercises page 47
Problem number : 22(b)
Date solved : Thursday, October 02, 2025 at 09:43:33 AM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 3 x -y-\left (x +y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 51
ode:=3*x-y(x)-(x+y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-c_1 x -\sqrt {4 x^{2} c_1^{2}+1}}{c_1} \\ y &= \frac {-c_1 x +\sqrt {4 x^{2} c_1^{2}+1}}{c_1} \\ \end{align*}
Mathematica. Time used: 0.248 (sec). Leaf size: 85
ode=(3*x-y[x])-(x+y[x])*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x-\sqrt {4 x^2+e^{2 c_1}}\\ y(x)&\to -x+\sqrt {4 x^2+e^{2 c_1}}\\ y(x)&\to -2 \sqrt {x^2}-x\\ y(x)&\to 2 \sqrt {x^2}-x \end{align*}
Sympy. Time used: 0.717 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(3*x - (x + y(x))*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x - \sqrt {C_{1} + 4 x^{2}}, \ y{\left (x \right )} = - x + \sqrt {C_{1} + 4 x^{2}}\right ] \]