Internal
problem
ID
[14001]
Book
:
Handbook
of
exact
solutions
for
ordinary
differential
equations.
By
Polyanin
and
Zaitsev.
Second
edition
Section
:
Chapter
2,
Second-Order
Differential
Equations.
section
2.1.2-7
Problem
number
:
227
Date
solved
:
Friday, October 03, 2025 at 07:23:23 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=a*(x^2-1)^2*diff(diff(y(x),x),x)+b*x*(x^2-1)*diff(y(x),x)+(c*x^2+d*x+e)*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=a*(x^2-1)^2*D[y[x],{x,2}]+b*x*(x^2-1)*D[y[x],x]+(c*x^2+d*x+e)*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") c = symbols("c") d = symbols("d") e = symbols("e") y = Function("y") ode = Eq(a*(x**2 - 1)**2*Derivative(y(x), (x, 2)) + b*x*(x**2 - 1)*Derivative(y(x), x) + (c*x**2 + d*x + e)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
False