Internal
problem
ID
[13068]
Book
:
Differential
Gleichungen,
E.
Kamke,
3rd
ed.
Chelsea
Pub.
NY,
1948
Section
:
Chapter
7,
non-linear
third
and
higher
order
Problem
number
:
1844
Date
solved
:
Friday, October 03, 2025 at 03:59:11 AM
CAS
classification
:
[[_3rd_order, _missing_x], [_3rd_order, _with_linear_symmetries]]
ode:=4*y(x)^2*diff(diff(diff(y(x),x),x),x)-18*y(x)*diff(y(x),x)*diff(diff(y(x),x),x)+15*diff(y(x),x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=15*D[y[x],x]^3 - 18*y[x]*D[y[x],x]*D[y[x],{x,2}] + 4*y[x]^2*Derivative[3][y][x] == 0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*y(x)**2*Derivative(y(x), (x, 3)) - 18*y(x)*Derivative(y(x), x)*Derivative(y(x), (x, 2)) + 15*Derivative(y(x), x)**3,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE (sqrt(1296*y(x)**4*Derivative(y(x), (x, 3))**2/25 - 23328*y(x)**3*Derivative(y(x), (x, 2))**3/125)/2 + 18*y(x)**2*Derivative(y(x), (x, 3))/5)**(1/3)/3 + Derivative(y(x), x) + 6*y(x)*Derivative(y(x), (x, 2))/(5*(sqrt(1296*y(x)**4*Derivative(y(x), (x, 3))**2/25 - 23328*y(x)**3*Derivative(y(x), (x, 2))**3/125)/2 + 18*y(x)**2*Derivative(y(x), (x, 3))/5)**(1/3)) cannot be solved by the factorable group method