1.4.14 problem 14

Internal problem ID [86]
Book : Elementary Differential Equations. By C. Henry Edwards, David E. Penney and David Calvis. 6th edition. 2008
Section : Chapter 1. First order differential equations. Section 1.5 (linear equations). Problems at page 54
Problem number : 14
Date solved : Tuesday, September 30, 2025 at 03:42:54 AM
CAS classification : [_linear]

\begin{align*} x y^{\prime }-3 y&=x^{3} \end{align*}

With initial conditions

\begin{align*} y \left (1\right )&=10 \\ \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 12
ode:=x*diff(y(x),x)-3*y(x) = x^3; 
ic:=[y(1) = 10]; 
dsolve([ode,op(ic)],y(x), singsol=all);
 
\[ y = \left (\ln \left (x \right )+10\right ) x^{3} \]
Mathematica. Time used: 0.015 (sec). Leaf size: 13
ode=x*D[y[x],x]-3*y[x]==x^3; 
ic={y[1]==10}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^3 (\log (x)+10) \end{align*}
Sympy. Time used: 0.104 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 + x*Derivative(y(x), x) - 3*y(x),0) 
ics = {y(1): 10} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{3} \left (\log {\left (x \right )} + 10\right ) \]